微生态益生菌粉在肉鸡日粮中的应用效果

赵新海 朱会林 于雅芝

1 材料与分组

试验用鸡: 选择北京"艾维茵"0~56日龄的肉鸡, 共计 1 600 只。

'微生态益生菌粉':辽宁省微生物研究所生产,粗蛋 白 40.55% 总菌数 135 亿个/g, 酵母菌总数 35 亿个/g,

试验分组与添加量:将试验用鸡随机分成 A、B、C、D 4组,每组400只,各组的基础日粮中,分别添加不同的 '微生态益生菌粉"替代等量的豆粕, 其比例分别为 0. 2%、3%、5%。 A 组(对照组)日粮成分及营养水平见表 1。

2 试验地点

在朝阳市饲料研究所示范场进行试验。

3 饲养方式

各组鸡均采用一致的较粗放的饲养管理条件,地 面平养, 砖面上铺 5 cm 厚锯末, 自然通风, 全程自由 饮用凉开水。最初3d育雏温度为32~34 ,同时根 据鸡群的状况,随日龄增加适当降低舍内温度,但环 境温度不低于 18 ;每天光照时间在 20~22 h 之间, 夜间舍内用 60 W 的白炽灯照明。0~3 日龄将料均匀 撒在塑料布上喂食,日喂8次,每次间隔3h,从4日

赵新海, 辽宁省微生物科学研究院, 122000, 辽宁省朝阳 市双塔区文化路二段 22号。

朱会林,朝阳市动物疫病预防控制中心。

于雅芝,朝阳市饲料研究所饲料厂。

收稿日期: 2007-07-23

提高,降低血清中尿酸和葡萄糖含量。本试验以添加 10%的发酵豆粕为最佳。

参考文献

- 1 刘春雪,李绍章,黄少文等.发酵豆粕配制抗断奶应激仔猪饲养试 验[J].湖北畜牧兽医, 2005(5):15~17
- 2 潘木水, 付畅国, 周凤珍. 断奶仔猪日粮中发酵豆粕替代代乳粉的 研究[J].广东饲料, 2005,14(4):30~31
- 3 Maynard L A, et al. Animal nutrition. Mc Graw- Hill Book Company. New York, 1979. 32 ~33
- 4 陈代文, 唐仁勇. 仔猪营养研究进展及无公害化饲养与饲粮配制[J]. 饲料工业,2003(9):23~25
- 5 Jensen. Are peptides needed for optimum animal nutrition [J]. Feed management, 1991, 114:1 122 ~ 1 129
- 6 Kephart, Sheritte. Performance and Nutrent balance in growing swince fedlow-protein diet supplemented with amino acids and potassium[J]. Anim Sci., 1990, 68(7): 1 999 ~2 008
- 7 李富伟, 蔡辉益. 肽对肉鸡生长性能的影响及其生理机理研究[J]. 动物营养学报, 2005, 17(1): 40~44
- 8 Webb K E J r. Intestinal absorption of protein hydrolysis products:A

龄改为自由采食.0~21日龄采用雏鸡料.22日龄后改 用大鸡料。

表 1 对照组日粮配方组成及营养水平

项目	0~3周	4~8周		
原料组成(%)				
玉米	62.45	66.26		
豆粕	32.70	26.50		
棉粕	-	2.00		
鱼粉	3.50	3.00		
植物油	0.60	1.50		
罗维 2305	0.55	0.50		
蛋氨酸	0.10	0.12		
金霉素(15%)	0.05	0.06		
盐霉素	0.05	0.06		
营养水平				
代谢能(MJ/kg)	12.08	12.41		
Ca(%)	0.89	0.90		
有效磷(%)	0.45	0.43		
蛋氨酸(%)	0.45	0.44		

消毒及免疫程序: 鸡入室前,室内铺好垫料及 全部用具放入舍内用 3 倍量福尔马林熏蒸消毒; 2~ 3 d 清洗食槽及饮水器、3~5 d 用多浓碘带鸡喷雾消:

7、30日龄滴鼻点眼新城疫疫苗,14、24日龄滴口法 氏囊苗。

4 试验方法

4.1 称重时间与方法

每间隔7d进行1次称重。用天平逐只称重确定 0~2 周每组鸡重、取平均值:3~7 周每组用盘秤随机 称重 100 只鸡, 取平均值: 8 周称各组鸡群总重量, 取 平均值。

- Review J[J]. Anim. Sci., 1990, 68: 3 011 ~3 022
- 9 Colnago G L, et al. Effect of responses of starting broiler chicks to incremental reduct ion in intact protein on performance during the grower phase[J]. Poul. Sci., 1991, 70(Abstr.)
- 10 Pinchasov Y, et al. broiler chicken response to low protein diets supplemented with synthetic amino acids[J]. Poul.Sci.,1990,69: 1 950~1 955
- 11 Mendonca C X J r, Jensen L S. Influence of valine level on performance of older broilers fed a low protein diet supplemented with amino acids[J]. Nutr. Rep. Inter., 1989, 40: 247 ~252
- 12 李富伟, 蔡辉益. 日粮中肽和氨基酸比例对肉鸡生长性能和生理 生化指标的影响[J].中国饲料, 2006 16):18~21
- 13 陈代文. 补料及开食料中不同种类蛋白质对仔猪过敏反应及腹 泻程度的影响[J].畜牧兽医学报, 1995,26(3):200~206
- 14 刘杰, 韩正康. 粗酶制剂添加于大麦日粮中对鸡生长和血液生化 值的影响[J].动物营养报, 1999, 1(2); 30~37
- 15 杨凤主编. 动物营养学 第二版). 中国农业出版社, 2001. 206
- 16 Nelssen J L, et al. Effect of dietary energy intake during lactation on performance of primparous sows and the irlitters [J]. J. Anim. Sci., 1985,61(5):1 164~1 171

(编辑:高 雁, snowyan78@tom.com)

4.2 料耗计算方法

每组每周统计 1 次, 耗料量除以周末实际存栏鸡数, 视为本周每只鸡平均耗料量。

4.3 增重提高率计算方法

增重提高率=(试验组出栏每只鸡平均重量-对照组出栏每只鸡平均重量)/对照组出栏时每只鸡平均重量)。

5 试验结果

5.1 鸡群状态观察

从整个试验过程观察,试验组的鸡生长状态要好于对照组,试验组鸡只精神状态良好、采食兴奋、采食量大、体质健壮、羽毛光亮、粪便成形,没有腹泻现象发生,鸡舍氨臭味明显小于对照组。

5.2 生长性能指标

各组周总耗料量、平均增重及死淘情况见表 2, 各组全程统计结果见表 3. 各组经济效益比较见表 4。

表 2 每周试验结果统计

	0	4 🖾	0 🖾	0 🖽	4 🖾	- E	0.19	7 E	0 🖽	A 71
项目	0	1周	2周	3周	4周	5周	6周	7周	8周	总计
耗料量(kg)										
A		65.50	81.50	200.00	303.00	235.00	529.00	330.50	327.00	2 071.5
В		61.00	93.00	170.00	315.00	310.00	582.50	347.00	410.00	2 288.5
С		62.00	90.50	173.50	309.50	337.50	508.50	449.50	379.00	2 310
D		64.50	96.00	201.50	305.00	255.00	562.00	362.50	405.50	2 252
鸡平均重量(g)										
Α	66.21	151.3	297.5	587.3	981.8	1 217	1 884	2 260	2 626	
В	65.85	151.4	317.8	580.4	989.7	1 307	1 984	2 377	2 819	
С	67.05	151.6	318.4	594.2	1 115.3	1 359	1 977	2 493	2 906	
D	66.11	152.2	315.2	621.2	1 046.4	1 293	1 964	2 363	2 808	
死淘数量(只)										
Α	0	8	1	4	5	7	2	4	3	34
В	0	3	1	2	2	5	3	2	3	21
С	0	4	0	1	4	6	3	2	2	22
D	0	2	0	1	2	4	1	2	1	13

注: 试鸡在试验第8周全部出栏。

表 3 全程试验结果统计

项目	入栏数(只)	出栏数(只)	成活率(%)	总耗料量(kg)	鸡总增重(kg)	增重提高率(%)	料肉比	料肉比下降率(%)
Α	400	366	91.50	2 071.5	937	0	2.212	0
В	400	379	94.75	2 288.5	1 043	7.54	2.194	0.81
С	400	378	94.5	2 310	1 073	10.90	2.153	2.67
D	400	387	96.75	2 252	1 061	7.12	2.123	4.02

表 4 各组间经济效益比较

项目	毛鸡总重	总价	雏鸡料耗	价值	大鸡料耗	价值	总耗料	去掉耗料费用	比对照组	平均鸡只
坝日	(kg)	(元)	(kg)	(元)	(kg)	(元)	费用(元)	的收入(元)	多收入(元)	多收入(元)
Α	961	4 708.9	347	555.2	1 724.5	2 586.75	3 141.95	1 566.95	0	0
В	1 068.5	5 235.65	324	518.4	1 964.5	2 946.75	3 465.15	1 770.5	203.55	0.51
С	1 098.5	5 382.65	326	512.6	1 984	2 976	3 488.6	1 894.05	327.1	0.82
D	1 086.5	5 323.85	362	579.2	1 890	2 835	3 414.2	1 909.65	342.7	0.86

注: 毛鸡单价以 4.9 元/kg, 雏鸡料单价 1 600 元/t、大鸡料单价 1 500 元/t, 在这里没有考虑微生态益生菌粉替代豆粕 使饲料成本下降的因素。

由表 2、3 可见, 肉鸡在不同生长阶段试验组比对照组增长速度都有所提高, 出栏时试验组比对照组提高 7.12%~10.90%, 可见"微生态益生菌粉"添加于饲料中具有一定的促生长作用。

由表 3 可见,试验组的成活率都高于对照组,说明"微生态益生菌粉"对提高机体的免疫力有一定的作用,这与本品所含有的微生物活菌有一定的关系。在肉鸡饲料中使用"微生态益生菌粉"可以提高饲料的转化率,降低料肉比 0.81%~4.02%, 这与本品含有活菌和消化酶有一定的关系。

由表 4 可见, 使用"微生态益生菌粉"给饲料厂及养殖户带来一定的经济效益,可使每只肉鸡多盈利

0.51~0.86元。本品等量替代豆粕,不仅可以使饲料成本有所下降,还可以提高饲料的质量,其添加量为 2%~5%都有一定的饲喂效果。

6 结论

微生态益生菌粉作为添加剂应用于肉鸡饲料中, 在一定范围内等量替代豆粕是完全可行的;能提高肉鸡的成活率、饲料的转化率和肉鸡增长速度;同时能够改善饲养环境,减少疾病的发生,增加收益率;本品完全可在肉鸡饲料中应用。

本次试验所设计的添加量上限 5%, 从结果上看设计得有点偏低,最佳添加量是否能够超过该数值有待于进一步研究。 (编辑:王 芳, xfang2005@163.com)